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Nonlinear Propagation of Ultrasound in 
Superfluid 3He 

P. G. N. deVegvar I 

After introducing the physics of sound propagation in normal and superfluid 
3He, nonlinear phenomena are discussed. These bear close resemblance to 
optical effects, including saturation of the absorption, amplitude dependence of 
the group velocity, pulse break-up, and pulse compression. Preliminary evidence 
indicates that above an input power threshold the sound pulses propagate in a 
solitonlike fashion. A naive sine-Gordon model does not explain the obser- 
vations. 
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1. I N T R O D U C T I O N  

Ever since the discovery of the superfluid phases of 3He in 1972, ultrasound 
measurements have provided valuable information about  the liquid's 
response to density perturbations. 2 Three years ago nonlinear effects were 
observed in these phases which have analogs in optical systems. The non- 
linearities include saturation of the absorption, pulse break-up, amplitude- 
dependent received pulse widths and group velocities, effects depending on 
pulse area, and solitonlike pulse scattering results. (2~ A detailed theory 
explaining these phenomena has yet to be derived. Since this talk is 
designed for a multidisciplinary audience, a brief introduction to the basic 
facts about  3He will be presented. Following this, the concepts of first and 
zerosounds will be introduced along with an elementary discussion of 
collective modes in the superfluid. Next the experimental observations in 
both the linear and nonlinear regimes will be described. Finally, theoretical 
interpretations of the observations will be reviewed. 

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853. 
2 For a review see Ref. 1. 
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3He condenses under one atmosphere at 3 K. It is a spin-l/2 Fermion 
with a pressure-dependent Fermi temperature of about 1 K. Between the 
superfluid transition temperature Tc~2 mK and roughly 100 mK 3He is a 
degenerate neutral normal Fermi liquid. Here "normal" means that the 
low-energy states of the interacting system can be reached by an adiabatic 
turn-on of the interactions beginning from the noninteracting case. This is 
to be contrasted with a Bardeen-Cooper-Schrieffer (BCS) superconductor, 
where T c is nonanalytic in the interaction strength as that quantity 
approaches zero. Additionally, one frequently refers to "quasiparticles," by 
which one means the low-lying localized states obtained by adding or 
removing a single particle from the interacting system. Figure 1 shows the 
phase diagram of 3He.3 All measurements were performed in magnetic 
fields below 1 kG. The observations made at Cornell were made exclusively 

3 Phase diagram courtesy of D. D. Osheroff, Bell Laboratories, 600 Mountain Avenue, 
Murray Hill, New Jersey. 
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Fig. 1. The low-temperature phase diagram of 3He. 
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in the B phase; and this talk will confine itself to that fluid, although non- 
linear effects have also been seen in the A phase. (3) 

The normal fluid supports two types of propagating density per- 
tubations. These modes are the result of Landau's Fermi liquid theory. (4) 
This framework is applicable to cases where h c o ~ f ,  h q ~ p f ,  and 
T <  100 mK. Here ~o(q) is the sound frequency (wave vector) and es(Ps) is 
the Fermi energy (momentum). Both modes, referred to as zero and first 
sound, are distortions of the local distribution function: 

np( r, t) = nEp Q + 6np( q, 09) e i(q r -o~t) 

Here the left-hand side represents the probability of finding a quasiparticle 
at r, t. The first term on the right-hand side is the equilibrium (Fermi) dis- 
tribution function. 6np describes the deformation of the local Fermi surface 
from equilibrium. In response to this "displacement," two types of "restor- 
ing forces" are created. In the first, collisions enforce local thermal 
equilibrium. This requires that the collisions have time to act during one 
sound wave period, i.e., c o ~ l .  Here �9 is a temperature-dependent 
quasiparticle lifetime of order ~10 -Tsec. This describes first 
(hydrodynamic) sound, where collisions dominate in the Boltzmann 
equation for r/p. In an interacting many-particle, a second sort of restoring 
force is possible: each quasiparticle moves in the self-consistent field 
generated by all the others. This causes a coherent, cooperative motion, 
which is upset by collisions. One can neglect collisions provided they 
induce only a slow change in the distribution function over a wave period: 
co~ >> 1. This type of density wave is known as zero (collisionless) sound, in 
analogy with similar types of waves in plasmas. Both types of waves are 
longitudinally polarized. The usual phase space arguments imply that 
~ 1/T 2. Then, if one fixes co in the tens of MHz range (as is done in 
practice) and lets T-*0,  one encounters three regimes of sound 
propagation: (a) T > 10 mK: coz ,~ 1 - -  first sound; (b) T ~ 8 mK: 
cot ~ 1 - -  large attenuation; (c) T <  6 mK: cot >> 1 - -  zero sound. 

Before discussing zero sound propagation for T <  To, a brief descrip- 
tion of the superfluid states will be given. 4 First, consider the ground state 
of superfluid 3He. Here one has Cooper pairing as in ordinary BCS super- 
conductors, except that the state is spin triplet instead of the S = 0 ground 
state usually encountered in metals. The mechanism of attraction between 
3He quasiparticles is not via phonons, as in S-wave superconductors, but 
the exchange of spin fluctuations is believed to play a major role. In this 
mechanism, as a spin moves by a point in the fluid it induces a long-lived 

4 F o r  a n  i n t r o d u c t i o n  to  super f lu id  3He see Ref. 5. 
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spin polarization cloud there which then attracts a second spin. The super- 
fluid state is characterized by a temperature-dependent gap matrix 3(k) 
which varies over momentum (k) space. The meaning of the gap is that 
energy required to excite a quasiparticle is given by 

E2(~) = (~k - ~r) 2 + 23  + 

where e~ is the quasiparticle kinetic energy. For the B phase, J is isotropic 
in k space and 33 + = A~I, like a BCS superconductor. More formally, the 
order parameter may be described by a distribution function gK which is a 
4 x 4 matrix. The normal fluid, on the other hand, is characterized by a 
2 x 2 matrix distribution function n. 

Besides the ground state, excited states of the superfluid may be 
generated. This is done in practice by passing zero sound through the fluid. 
The first of these excited states is simply incoherent ionization of the 
Cooper pairs ("pair breaking") by an external perturbation. This requires 
hco/> 2A(T), the factor 2 arising from the fact that there are two quasipar- 
ticles per Cooper pair. Additionally, there exist collective modes of the 
superfluid. Here the restoring force is created by the quantum mechanical 
coherence of the pair wave function. It may be mathematically viewed as 
vibrations of the complex elements of the gX matrix, corresponding to a 
ringing or "squashing" of the gap. If one considers Cooper pairs as bound 
diatomic molecules, these collective modes may also be envisioned as 
molecular vibrations possessing macroscopic phase coherence. An ordinary 
gas of diatomic molecules would not support this type of cooperative 
motion. 5 

Experimentally, these order parameter collective modes appear as 
maxima in the zero sound attenuation. These may be crudely viewed as 
arising from the absorption of sound wave energy by a resonantly excited 
mode. As usual, the energy exchange occurs when the sound frequency and 
wave vector match that of a collective mode. This can be shown to happen 
when he)~_ a(p, H)A(T). Here a(p, H) is a pressure- and magnetic-field- 
dependent number on the order of unity. Usually co is held fixed and T 
allowed to vary until the resonance condition is satisfied. This leads to 
plots of sound attenuation e(T) showing maxima at resonant temperatures. 

2. E X P E R I M E N T A L  O B S E R V A T I O N S  

The experimental arrangement was that of a simple pulse propagation 
experiment. Radio frequency tone bursts of 100 MHz a few #s long were 
applied to one of two piezoelectric quartz crystal transducers separated by 

5 For an introduction to collective mode physics in 3He see Ref. 6. 
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0.318 cm of superfluid 3He. The second transducer served as a receiver, 
whose electrical response was amplified at room temperature and then 
further processed. 

Figure 2 shows the experimentally determined attenuation as a 
function of temperature./7'8/ These data were taken at signal levels suf- 
ficiently low that no nonlinearities were apparent. Near the low-tem- 
perature mode 7, the so-called "real squashing mode," several nonlinear 
phenomena arose as the transmitted power was increased. The first of these 
to be observed was absorption saturation shown in Fig. 3. As the transmit- 
ted pulse power is increased, the attenuation progressively decreases until 
the absorption line is completely saturated. The energy density required for 
this to occur is about 1% of the superfluid condensation energy. 

The second nonlinear effect that was observed was pulse break-up. At 
low-input-power levels one receives a single small broad pulse, in accord 
with the large dispersion associated with the mode crossing. As the power 
level is increased, small secondary pulses are observed following the first 
received pulse. These secondary pulses grow and move faster as the input 
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Fig. 2. The temperature-dependent zero sound attentuation coefficient in 3He-B, measured 
at 5 bars and 60 MHz. The arrow designated 2A is the pair breaking peak; lx/~/5A points to 
the theoretically determined position of the (imaginary) squashing mode. ,/is the mode where 
the nonlinear effects were studied at Cornell and has been identified as the real squashing 
mode. 
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Fig. 3. The power-dependent attentuation coefficient near the y peak. The power levels 
labeling each curve are accurate to within 3 dBm. The data was taken at 24 bars with 
100 MHz sound. 

amplitude is further increased until they overwhelm the original first 
received pulse. This evolution is shown in Fig. 4. Since the measured 
bandwidth of the mode was twice the transducer bandwidth or pulse spec- 
tral width, hole burning, followed by beating of the spectral wings of the 
unabsorbed pulse, cannot explain the data. However, the mode width 
results are still controversial./8) 

Additionally, it was observed that the width and group velocity of the 
first received pulse were amplitude dependent. These relationships are 
shown in Fig. 5. 

Furthermore, several effects relating to the pulse area (moment) were 
observed. By area is meant the integral S IV(t)] dt, where V is the received 
signal voltage. Figure 6 illustrates this phenomenon. For  constant tem- 
perature, the fact that the areal plot of pulses of different duration are coin- 
cident eliminates incoherent bleaching as an explanation of the data. For  
low-input areas the plot obeys Beer's law (linear absorption). Then as the 
input area is increased there is a sudden change to a regime of constant 
output pulse area. When the input area is increased to the point where the 
secondary pulses emerge, t he  output area increases by several orders of 
magnitude. It should be noted that the secondaries were of uniform phase, 
while the first received pulses at low power levels were phase and frequency 
modulated. 
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Fig. 4. The evolution of received temporal pulse shape as a function of input power (pulse 
break-up). M designates a factor by which the curve amplitude should be magnified. Power 
increases upwards. 

At this point evidence seemed to indicate the possibility of solitonlike 
behavior in this system. To further test this speculative hypothesis pulse 
scattering experiments were performed. Here both crystals were 
simultaneously excited and only one acted as a receiver following the front- 
end amplifier's recovery from saturation. Two different types of results were 
observed at the receiver. Either the pulses annihilated one another, leading 
to hash at the receiver, or they superposed. In the normal liquid, super- 
position occurred everywhere except for cases of amplifier ringing. The 
same results were obtained in the superfluid far from the mode crossing. 
These results are in accord with linear theory. In the wings of the line, 
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The amplitude dependent width and group velocity v for the first received pulses, c o 
is the velocity of zero sound just about  T c. 

annihilation was observed at all measured powers. On the absorption peak 
there were three subcases: Low-amplitude (linear) pulses superposed. In 
the constant-area or multiple-pulse regime, pulses annihilated one another. 
Finally, the large-area secondary pulses of uniform phase mentioned above 
superposed. These results are consistent with (but do not by themselves 
imply) solitonlike propagation of the large-area secondaries. The results for 
the line wings are puzzling in that a linear regime, where one expects super- 
position to hold, seems to be missing. Perhaps the wings are already par- 
tially saturated by powers necessary to obtain reasonable SIN ratios. 
Moreover, one would have expected the constant-area on-peak results to 
superpose, based on a soliton picture similar to that used in optical self- 
induced transparency. Further experiments of this nature are in progress. 

3. THEORETICAL INTERPRETATIONS 

The first point of view one can take toward these phenomena is a two- 
level description where the superfluid ground state plays the role of the 
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Fig. 6. Total area under the detached signal, divided by the input area, vs. the input area. 
Data points are T =  0.984 mK, 4.6-#sec pulses (~ ) ;  T=  0.908 mK, 1.3 #sec (O); 7-~sec pulses 
at the same temperature ([]). 

lower state and the collective mode acts as the upper state. Although the 
upper state is five-fold degenerate, only one state in the manifold couples to 
density fluctuations in zero field. The equations resulting from this 
diatomic molecule analogy are identical to those describing optical self- 
induced transparency, m) In, particular, one expects an area theorem: 
dA/dz -- -c~ sin A. Unfortunately, this does not agree with the data. Besides 
the problems already mentioned above, there are three additional 
difficulties. (1~ Firstly, if one plots A(out)/A(in)vs. A(in) for the 
numerically integrated sine-Gordon equation and for the experiments, the 
plots are qualitatively different. The theory predicts a sharp rise in 
A(out)/A(in) for A( in )=  ~z, while the experiments show a fall. The theory 
also has only algebraic variations of A(out)/A(in), while the experimental 
range is over three orders of magnitude! Secondly, the two-level model 
predicts Co/V- 1 ~ ("gF) n, where Co is the normal fluid zero-sound velocity, v 
is the measured group velocity, and ~7 r is the pulse temporal width, n = 1(2) 
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if the mode linewidth >> ( 4 )  pulse spectral width. Both n = 1, 2 fit the 
A(out)=constant portion of the data, making this test inconclusive. 
Finally, the self-induced transparency model gives Ve~(amplitude) ~ for 
A(out) = 2re, but the data fit VF~exp(--const x ampl) better. 

A recent preprint (m expands the distribution functions gK and the 
molecular fields about equilibrium but goes beyond first order in the den- 
sity fin to third and higher orders. The results are that for the normal liquid 
the nonlinear effects ought to be much smaller (by three orders of 
magnitude) than in the superfluid. For 3He-B third harmonic generation is 
predicted for 3E . . . .  d ~ (1-5 %)Epai~, which is in the regime of the observed 
saturation effects. 

4. C O N C L U S I O N S  

Collective modes in superfluid 3He have some features in common 
with optical nonlinear systems. These include absorption saturation, pulse 
break-up and compression, amplitude dependent velocities, and effects 
relating to pulse area. The scattering results are complex but are consistent 
with solitonlike propagation of the large single phase secondary pulses near 
the resonance. Finally, the naive sine-Gordon model is not a faithful 
paradigm for the system. More experimental and theoretical work is 
necessary before a clear understanding of these rich phenomena is reached. 
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